1、正比例函数是两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)。
正比例函数属于一次函数,是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,则叫做正比例函数。 正比例函数属于一次函数,但一次函数却不一定是正比例函数。
正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓y轴上的截距为零,则为正比例函数。
正比例函数是两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)。
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。特别地,当一次函数y=kx+b中的b=0时,y=kx,为正比例函数。
一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。因此在u=2f中,令因变量y=u,自变量x=f,所以u=2f为正比例函数。
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。特别地,当一次函数y=kx+b中的b=0时,y=kx,为正比例函数。
正比例函数是一种特殊形式的一次函数,表示两个变量之间成正比的关系。
正比例函数的图像和性质如下:正比例函数y=kx(k≠0)中x和y的取值均为全体实数,又因为x=0时总有y=0,所以其图象是一条过原点(0,0)的直线。根据正比例函数解析式y=kx(k≠0),当x=1时,可得y=k。
对称性:对称点:关于原点成中心对称。对称轴:自身所在直线;自身所在直线的平分线。
单调性:当k0时,图像经过第三象限,从左往右上升,y随x的增大而增大(单调递增),为增函数;当k0时,图像经过第四象限,从左往右下降,y随x的增大而减小(单调递减),为减函数。
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。特别地,当一次函数y=kx+b中的b=0时,y=kx,为正比例函数。
正比例函数属于一次函数,是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,则叫做正比例函数。 正比例函数属于一次函数,但一次函数却不一定是正比例函数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比例函数。
一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。因此在u=2f中,令因变量y=u,自变量x=f,所以u=2f为正比例函数。
正比例函数的定义:一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。函数(function),数学术语。
一般地,两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。因此在u=2f中,令因变量y=u,自变量x=f,所以u=2f为正比例函数。
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数。特别地,当一次函数y=kx+b中的b=0时,y=kx,为正比例函数。
正比例函数是两个变量x、y之间的关系式可以表示成形如y=kx的函数(k为常数,x的次数为1,且k≠0),那么y=kx就叫做正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)。
正比例函数属于一次函数,但一次函数却不一定是正比例函数,它是一次函数的一种特殊形式。即一次函数形如:y=kx+b(k为常数,且k≠0)中,当b=0时,即所谓“y轴上的截距”为零,则叫做正比例函数。
正比例函数是一次函数的特殊形式,即一次函数 y=kx+b中(k为常数,x的次数为1,且k≠0),若b=0,即所谓“y轴上的截距”为零,则为正比例函数。性质:正比例函数属一次函数,但一次函数却不一定是正比例函数。